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ABSTRACT

Subjective methods have been reported to adapt a general-purpose
ontology for a specific application. For example, Gene Ontology (GO)
Slim was created from GO to generate a highly aggregated report of
the human-genome annotation. We propose statistical methods to
adapt the general purpose, OBO Foundry Disease Ontology (DO)
for the identification of gene-disease associations. Thus, we need
a simplified definition of disease categories derived from implicated
genes. On the basis of the assumption that the DO terms having
similar associated genes are closely related, we group the DO terms
based on the similarity of gene-to-DO mapping profiles. Two types
of binary distance metrics are defined to measure the overall and
subset similarity between DO terms. A compactness-scalable fuzzy
clustering method is then applied to group similar DO terms. To
reduce false clustering, the semantic similarities between DO terms
are also used to constrain clustering results. As such, the DO terms
are aggregated and the redundant DO terms are largely removed.
Using these methods, we constructed a simplified vocabulary list
from the DO called Disease Ontology Lite (DOLite). We demonstrated
that DOLite results in more interpretable results than DO for gene-
disease association tests. The resultant DOLite has been used
in the Functional Disease Ontology (FunDO) Web application at
http://www.projects.bioinformatics.northwestern.edu/fundo.
Contact: s-lin2@northwestern.edu

1 INTRODUCTION
A general-purpose open biomedical ontology can be thought of as a
knowledge capture or knowledge representation device. According
to the Open Biomedical Ontologies (OBO) Foundry principles,
the ontology should contain well-defined terms with well-defined
relationships (e.g. is_a, part_of) between the terms, and represent
as much of the current knowledge in a given domain as possible.
Disease Ontology (DO) is an OBO Foundry ontology, organized
such that the path to the root is always true. DO organizes disease
concepts in a directed acyclic graph (DAG) so that traversing away
from the root of DO moves towards progressively more granular
and specific terms. The full DO graph is very useful for organizing
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a wide spectrum of data, but is not necessarily optimal for specific
applications such as identifying disease-gene relationships. By
analogy with other biological ontologies, a trimmed-down version
is very useful for building a high-level functional summary from a
gene list. For instance, a simplified version of the Gene Ontology
(GO) called ‘GO Slim’ provides a broad, integrative overview of
molecular and cellular biology by combining and removing fine-
grained terms in the GO. GO Slim has proven critical in comparing
annotations across genomes (Adams et al., 2000) and interpreting
biological functions of a gene list (Shah and Fedoroff, 2004).

We are especially interested in interpreting a list of genes in
the context of disease, which is a critical step in translating
molecular findings from microarrays, proteomics and other types
of high-throughput screening methods into clinical relevance.
To achieve this goal, we were part of the collaboration
that has developed the general-purpose OBO Foundry DO
(http://www.diseaseontology.sourceforge.net). The DO has been
successfully used here at Northwestern in the NUgene project
to build a detailed disease phenotype from data available in the
electronic medical record. In addition, the DO has been used as a
controlled vocabulary to annotate the human genome in terms of
diseases (Osborne et al., 2009).

However, the DO is very complex: revision 26 of the DO contains
11 961 terms in the form of a directed acyclic graph, of which
4399 terms are internal nodes with up to 16 levels of hierarchical
structures. Such a complex structure creates a special challenge for
functional enrichment tests.

Functional enrichment tests were originally developed to interpret
biological meanings of a gene list from microarray experiments
(Dopazo, 2006). Such statistical tests are also called GO analysis,
because the GO was originally used to define the functional
categories. Briefly, k functional categories (diseases) are defined. For
each category, a hypergeometric test is used to test the enrichment
of proportions (per cent of genes belong to this category) in the
identified gene list versus the genome (Falcon and Gentleman,
2007). Although more sophisticated statistical procedures are in
development (Goeman and Mansmann, 2008), canonical tests
assume that each category is independent and identically distributed
(iid, i.e. not in a hierarchical structure). A simplified approach
is to treat each term in the ontology graph as an independent
category (ignoring the graph structure), which not only violates
the iid assumption but also creates another problem of multiple
comparisons (k = 11 961 for DO). Thus, trimming the DO into
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simplified categories will make the statistical test tractable as well
as the results simpler for human comprehension.

A simple method of trimming DO terms is to select the DO terms
at a certain level in the DAG. This method is very arbitrary and it
is hard to determine a fixed level suitable for different branches in
the DAG; moreover, many important DO terms might be missed.
To deal with the similar problem for GO, Alterovitz et al. (2007)
proposed to partition the GO database based on information content
(Shannon information) of individual GO terms. But how to choose
and interpret the level of information content is still a problem.
Here, we prefer grouping the DO terms using semantic distance in
the context of gene annotations. The semantic distances in previous
studies are either information based (Jiang and Conrath, 1997;
Resnik, 1999), graph-structure based (Wang et al., 2007; Wu et al.,
2005) or a hybrid of both (Sheehan et al., 2008). One limitation of
graph-structure-based semantic distances is that it does not consider
genes that are annotated by DO terms. As the genes annotated
by DO terms are direct evidence of disease classification at the
molecular level, DO terms with the same or similar mapped genes
are closely related and can be combined. Moreover, the combination
of DO terms based on similar gene mappings will remove the
redundancies from the results of an enrichment test. Therefore,
we define the distance metrics of DO terms based on gene-to-DO
mapping profiles. The mapping profile-based distance metric has
been used to measure the similarity between two genes, but, to
our knowledge, it has not been used to measure the ontological
similarity. As we are interested in both the overall similarity and the
subset similarity (one DO term-associated gene list is the subset of
another one) between two DO terms, we separately define two types
of binary distance metric. A compactness-scalable fuzzy clustering
method (Du et al., 2005) is then applied to group similar DO
terms based on defined distance metrics. For the clustering using
subset similarity distance metric, the clustering results are further
constrained by the semantic similarities between DO terms to reduce
the false clustering. Following these steps, a domain expert was
assigned to curate the computational results and assign new names
to these DO term groups. We named these simplified controlled
vocabulary lists of diseases as ‘Disease-Ontology Lite’ (DOLite).
The details of each step are described in the methodology section.

2 METHODS

2.1 Overview of building the DOLite database
Figure 1 shows the framework of creating the DOLite database based on the
DO database. Next, we describe each step in detail.

2.2 Pre-filtering the DO terms
In the DO database, many of the DO terms are abstract concepts created
for the purpose of the ontological reasoning; they are not used in scholarly
communications and have very few genes directly associated with them. For
instance, ‘cell proliferation disease’ only appears three times in 18 million
MEDLINE abstracts, but it is still listed as a disease category in the DO graph
(Fig. 2). A quick filtering based on the number of genes directly mapped to
each DO term can easily identify these abstract DO terms.

Some other DO terms, which are not very well studied, also have very
few genes associated. Because of their small sizes of gene lists, they are
easy to be significant by chance in the enrichment test. To reduce the false
positives and increase the computational efficiency, we pre-filter these DO

Fig. 1. Flowchart of creating DOLite database based on DO database.

Fig. 2. A portion of the DO graph showing the complexity of DO.

terms and map their associated genes to their direct parent DO terms before
further calculations.

2.3 Gene-to-DO mapping profile matrix
Each gene in the human genome was annotated with DO, as we reported
before (Osborne et al., 2009). Figure 3 shows the mapping profile matrix
M. Each element Mlk represents the mapping between gene Gl and ontology
term Ok . The values of the matrix elements are as follows: for Mlk = 1,
there exists evidence showing that gene Gl is involved in the disease defined
by ontology term Ok and for Mlk = 0, there is a lack of evidence. Lack of
evidence does not imply that there is no relationship but rather that there is
no information available on a relationship. For our application, each column
is a gene-to-DO mapping profile of the corresponding DO term; it is also
equivalent to a DO-term-associated gene list.
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Fig. 3. An example gene-to-DO mapping matrix.

2.4 Distance metrics between gene-to-DO mapping
profiles

To measure the similarity between DO terms, we first need to define the
distance metrics. We chose to use the gene-to-DO mapping matrix M based
on distance because we are interested in identifying associations between
genes and DO terms. Kappa statistics were used to measure the similarities
between genes based on their mapping profiles (rows of mapping profile
matrix M in Fig. 3) (Dennis et al., 2003). As kappa statistics put equal
importance on 0s and 1s, this is very problematic when applied to cluster DO
terms. As shown in Figure 3, Mlk = 0 is a lack of evidence of involvement, not
information that rules out an involvement between gene Gl and ontology term
Ok . Therefore, our distance metrics will focus on 1s. Considering the special
situation of the structured ontology, we defined two types of binary distance
metrics, as shown in Equations (1) and (2). The distance values are between
0 and 1, with values closer to 0 indicating closer similarities. In Equations
(1) and (2), ‘∧’ is the binary AND operator and ‘∨’ is the binary OR operator.
dist1(A,B) measures the overall similarity between two binary vectors A and
B. In our case, A and B represent the columns of mapping profile matrix
M, and the distance is 1 minus the percentage of overlapping genes among
all genes associated with DO terms A and B. dist2(A,B) measures the subset
similarity between two binary vectors A and B. In our case, it is 1 minus the
percentage of one DO term-associated gene list being the subset of another
DO term-associated gene list. This is of interest particularly when these
two ontology terms have a close semantic relationship; e.g. for parent-child
relationships in DO DAG graph.

dist1(A,B) = 1−
∑

A∧B∑
A∨B

(1)

dist2(A,B) = 1−
∑

A∧B

min(
∑

A,
∑

B)
(2)

2.5 Clustering the gene-to-DO mapping profiles
With respect to the molecular basis of disease, significant redundancy
and overlap also exist in DO. For example, six terms (‘carcinoma of the
large intestine’, ‘adenocarcinoma of large intestine’, ‘adenocarcinoma of
the colon’, ‘colorectal neoplasms’, ‘malignant tumour of colon’ and ‘colonic
neoplasms’) in a small portion of the DO graph (as shown in Fig. 2) basically
describe the same group of diseases centred on the adenocarcinoma of colon.
Some of these terms may include other rare cancers affecting the colon, and
others may also include benign colonic tumours. However, these nuances
might not be differentiable by their associated genes. As such, the enrichment
test will likely report all these terms redundantly, making it more difficult to
interpret. In order to find the DO terms with very similar associated genes,
we perform clustering based on gene-to-DO mapping matrix M. Two types
of clustering based on two different binary distance metrics, as shown in
Equations (1) and (2), are performed.

The first clustering is based on the binary distance metric, dist1, which
measures the overall similarity of two ontology terms (i.e. their associated
gene lists). As one gene can involve in multiple diseases, semantically
distant DO terms may have significant biological pathway overlap and we
do not want to prune semantically distant terms as these may be biologically
informative. Unlike the conventional clear-cut clustering algorithms, fuzzy

clustering methods allow the overlapping assignment of the DO terms to
different clusters with varying degrees of membership. Therefore, fuzzy
clustering is ideally suited for our situation. Another requirement for the
clustering algorithm is the ability to control of cluster compactness, which
means the level of similarity among cluster members can be modified by the
researcher. On the basis of these considerations, we use the compactness-
scalable fuzzy K-means clustering algorithm described in Du et al. (2005).
This algorithm adds a scalable Gaussian window to the fuzzy membership
function to control the compactness of cluster. The σ Gaussian window
function controls the scale of the clustering algorithm, with smaller scales
having more compact clusters. For more details, please refer to Du et al.
(2005). Just as K-means clustering algorithms, the clustering result of
compactness-scalable fuzzy K-means algorithm depends on the initial choice
of the cluster centres. To better estimate the initial cluster centres, we first
perform a hierarchical clustering using a complete linkage method. By
limiting the height of the resultant hierarchical tree, we use the complete
linkage method to seed the initial cluster centres for the compactness-scalable
fuzzy K-means clustering algorithm.

The second clustering is based on the distance metric, dist2, which
measures the subset similarity between DO terms. For the case of one
DO term is a subset (or partial subset) of another, we are only interested
in the case with the terms having high semantic similarity. Therefore, the
clustering result will be constrained by the DO semantic distance as described
in the Section 2.6). Because of the constraint on DO semantic similarity, the
results of fuzzy and hierarchical clustering algorithms are very similar. Since
hierarchical clustering algorithms are much more efficient, the second cluster
was built by hierarchical clustering.

2.6 Semantic distances between DO terms
The estimation of semantic distance can be categorized as information-
based, graph-based and hybrid methods. We select to use a graph-
based Union–Intersection (UI) method, as implemented in the GOstats
Bioconductor package (Falcon and Gentleman, 2007), for its simplicity,
ease of interpretation and consistency with other distance metric defined
in Equations (1) and (2). The semantic distance of UI method is 1 minus
the percentage of overlapping nodes between two induced graphs among the
total number of nodes in two graphs. The resulting distance is in the range of
0–1 with values close to 0 having better similarities. The graph corresponding
to each DO term is composed of multiple paths from the DO term to the root
of the DO terms (disease). An implication of this method is that two deep
sister nodes (i.e. nodes that are distant from the root) will have higher levels
of similarity than two shallow sister nodes. Given the design of DO, this
is consistent and intuitive with the semantic similarity, or lack thereof, for
shallow nodes. This also means that two neighbouring, deep nodes, one of
which has two or more distinct paths to the root will be quite distinct from
nodes that only have one path to the top, or have differing paths to the top.
This again leverages the biological knowledge embedded in DO.

2.7 Combine clustering results
We treat the clustering result based on dist1 as the major clusters. The
clustering result based on dist2 is sub-clustered based on the semantic
distance between DO terms. Hierarchical clustering using the single linkage
method was used for sub-clustering. Sub-clusters with single elements are
filtered from further processing. Other sub-clusters are then merged with
major clusters whenever there are overlapping elements.

2.8 Expert curation of DOLite
After the statistical treatments as described above, a board-certified
pathologist manually edited the clustered DO terms, resolved the
computational artefacts and assigned a class label for each DOLite term.
DOLite is a simplified version of the DO for functional enrichment tests of
genes (Table 2). Instead of using medical terminologies for the label and
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definitions, we have attempted to use common English names as used in
Wikipedia for DOLite.

3 RESULTS
Following the procedures shown in Figure 1, we created DOLite
based on the DO. The DO terms were filtered to include only those
with at least five direct mappings. A gene-to-DO mapping profile
matrix was created. In this mapping matrix, each DO term also
include the mappings of its offspring. Clustering was performed
based on this mapping profile matrix. Because all the distance
metrics we used are in the range of 0–1 and are related with
the percentage of overlapping, we used the same threshold value
for different steps, which include the cut-off thresholds used in
clustering and the maximum allowed semantic distances of DO
terms. The scale of fuzzy clustering is selected as the half of
this threshold value. In our implementation, we set this distance
threshold value as 0.2 (80% of similarity). As a reference to the
expert curator, we also provide the clustering results based on
looser threshold values 0.3 and 0.5. The expert curator decided
the final mapping between DO terms and DOLite terms. Although
the general-purpose DO is designed to differentiate the nuances
of different disease categories, for the application of functional
enrichment test of gene lists, we decide to aggregate the related
terms and assign common English names for the diseases (as used
in Wikipedia). An example is shown in Table 1. Table 2 shows the
overview of final DOLite database and its comparison with DO
database.

3.1 DOLite annotation of the human genome
With the DO-to-DOLite mapping, we convert the previous
annotation of the human genes by DO into DOLite annotations.
Compared with DO, the DOLite annotation of the human genome is
more compact, as evidenced by the larger number of genes assigned
to individual disease category (Fig. 4B), and the smaller number of
disease categories assigned to individual gene (Fig. 4A).

3.2 Validation of DOLite using a benchmark
microarray data set

To validate the utility of DOLite, we used a benchmark microarray
data set of pancreatic cancer study (Antonov et al., 2008), which
was previously utilized to test GO-based annotations (Falcon and
Gentleman, 2007), for the functional enrichment test. Briefly, a list
of 125 genes identified in that study was used for functional analysis.
Hypergeometric test was applied to each DO (Osborne et al., 2009)
and DOLite term in the database.

We show side-by-side the top 12 categories (ranked by P-
values) of the DO and DOLite results in Table 3 and Figure 5. As
expected, the conventional DO analysis returned highly redundant
terms such as ‘cancer’, ‘carcinoma’ and ‘adenocarcinoma’, likely
because a number of these genes are shared in the biological
process of cancer development (Fig. 5A). However, no pancreas-
specific disease entities were picked up. Instead, it returned
some diseases unrelated to pancreatic adenocarcinoma, such as
respiratory tract disease, soft tissue neoplasm and skin disease.
These results may represent non-specific hits that contribute little
to data interpretation. In contrast, the analysis based on DOLite
did successfully return a number of entities closely related to

Table 1. An example of mapping DO to DOLite

DOID DO term DOLite term

DOID:680 Tauopathies Alzheimer’s disease
DOID:1307 Dementia Alzheimer’s disease
DOID:10652 Alzheimer’s disease Alzheimer’s disease

Table 2. DO versus DOLite

DO DOLite

Design Ontology Controlled vocabulary
Purpose General Specifically for functional

enrichment tests of genes
Structure Directed acyclic

graph
Immutable list

Details Finer Coarser
Linked to ULMS Wiki
Number of terms 11 961 561

ULMS: Unified Medical Language System.

A

B

Fig. 4. Comparison of DO and DOLite annotation of the human genome.
(A) The number of diseases per gene is plotted for the DO and the DOLite.
(B) The number of genes per disease is plotted for the DO and the DOLite.

the pathology of pancreas, in addition to generic cancer-related
terms. These entities include diabetes mellitus, hypoglycemia and
obesity and disorders frequently associated with the malfunction of
pancreatic islet cells. Another entity, primary biliary cirrhosis, also
causes pancreatic injury. These results support a strong pancreas
conjunction of the tested gene set, validating the effectiveness of
using DOLite to interpret microarray data.

Results from DOLite analysis also lead to interesting discoveries
that deserve further clinical investigation. We observed that breast
cancer was ranked very high among the DOLite results. This could
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Table 3. Top 12 categories of functional enrichment tests based on DO and DOLite database

DO DOLite

DO term Fold-enrichment P-value DOLite term Fold-enrichment P-value

Cancer 7.12 3.45E–36 Cancer 13.55 1.95E–25
Malignant neoplasms 6.93 8.74E–33 Diabetes mellitus 11.02 1.14E–09
Carcinoma 10.60 2.08E–32 Breast cancer 9.24 8.23E–09
Respiratory tract diseases 11.03 2.66E–32 Colon cancer 10.54 2.17E–07
Respiratory system disease 11.01 2.83E–32 Lung cancer 11.35 3.11E–06
Neoplasms, epithelial 10.22 9.34E–32 Embryoma 8.85 1.58E–05
Adenocarcinoma 13.30 1.90E–29 Atherosclerosis 9.73 3.84E–05
Gastrointestinal neoplasms 11.40 5.29E–28 Stomach cancer 11.79 7.06E–05
Disease of skin 9.88 2.36E–27 Primary biliary cirrhosis 32.18 1.12E–04
Soft Tissue neoplasms 11.28 4.77E–27 Hypoglycemia 110.84 1.34E–04
Alimentary system disease 8.66 1.05E–26 Obesity 9.78 1.70E–04
Malignant neoplasm of gastrointestinal tract 12.20 9.99E–26 Pancreas cancer 14.30 1.85E–04

Fig. 5. Disease-gene network analysis of the pancreatic cancer data set by
(A) DO and (B) DOLite.

be simply because breast cancer is one of the most extensively
studied cancers and therefore has more associated genes. However,
the predominant type of breast cancer is adenocarcinoma, which can
resemble some pancreatic adenocarcinomas on histology. So, could
these two cancers share some common genetic abnormalities as
well, other than those abnormalities seen in most cancers (e.g. genes

involved in cell cycle control)? This may be an interesting question
to explore.

4 DISCUSSION
Exploring relations between genes and diseases at the molecular
level could greatly facilitate our understanding of pathogenesis,
and eventually lead to better diagnosis and treatment. DO was
constructed as a general-purpose ontology to define diseases. It is
very useful to associate genes with diseases (e.g. a particular cancer)
or disease-related processes (e.g. tumour metastasis). However, due
to the complex structure of DO, the results of functional enrichment
test are usually hard to interpret. In this study, we proposed statistical
methods to slim the general-purpose disease ontology to a simplified
controlled vocabulary list called ‘Disease-Ontology Lite’ (DOLite)
specifically for the functional enrichment test of a gene list. DOLite
has several advantages over the conventional DO for functional
enrichment test. The complex hierarchical structure of DO is
unnecessary for the desired enrichment test. DOLite contains better-
defined disease entities that are easier to interpret by researchers
and clinicians. The entities are also enriched with associated genes,
leading to increased sensitivity of detection.

The enrichment test using the benchmark microarray data set of
pancreatic adenocarcinoma suggests that DOLite returned diseases
specific to the organ where original experiments were conducted on,
which directly confirm the validity of the experimental results.

In terms of contributions to biological databases, we created
DOLite, the first simplified version of the DO, and utilized
DOLite to annotate the human genome. In terms of methodological
contribution, we defined statistical methods to simplify a general-
purpose ontology. In contrast, the previous construction of
GO Slim from GO was largely a subjective process based
on expert opinion. The major contributions in methodology
include computing the ontology similarity based on gene-to-
ontology mapping profiles [derived from geneRIF (Harris et al.,
2004; Shah and Fedoroff, 2004)]; defining two types of binary
distance metrics to separately measure the overall similarities and
subset similarities and a compactness-scalable fuzzy clustering
method (clustering results were verified with the constraints
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of semantic distance between DO terms). The methodology
can be easily adapted to slim other ontologies, like GO.
Currently, DOLite is utilized in the Functional Disease Ontology
(http://www.projects.bioinformatics.northwestern.edu/fundo) Web
application to interpret clinical relevancies of a gene list.

Previous studies have suggested that GO Slim, which is
a simplified version of GO, greatly facilitates genome-wide
computational analysis (Nam and Kim, 2008). Similarly, we expect
that DOLite and its annotation of the human genome can be used
as a foundation for the development of more computational and
statistical methods to analyse the disease relevance of a gene list.
In the future, we will further refine the algorithms for creating the
DOLite database. For example, we can better integrate the semantic
distance of DO terms into the clustering process. We also plan to
add more sensitive methods to test the enrichment of each DOLite
term in a gene list.
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