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Abstract
Background: The human genome has been extensively annotated with Gene Ontology for
biological functions, but minimally computationally annotated for diseases.

Results: We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx)
to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive
subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease
Ontology), to filter and interpret results from MMTx. The results were validated against the
Homayouni gene collection using recall and precision measurements. We compared our results
with the widely used Online Mendelian Inheritance in Man (OMIM) annotations.

Conclusion: The validation data set suggests a 91% recall rate and 97% precision rate of disease
annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our
thesaurus-based approach allows for comparisons to be made between disease containing
databases and allows for increased accuracy in disease identification through synonym matching.
The much higher recall rate of our approach demonstrates that annotating human genome with
Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease
annotation of human genome.
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Background
High throughput genomics technologies generate a vast
amount of data. Determining the biologically and clini-
cally significant findings of an experiment can be a daunt-
ing task. Applying functional knowledge to genomic data
is one method that has been used to reduce data complex-
ity and establish biologically plausible arguments. These
methods rely on a priori definition of gene sets, and the
results necessarily depend on the strength of the annota-
tions [1,2]. Genome-wide annotation of gene function
has garnered much attention and the comprehensive
Gene Ontology (GO) Consortium annotations are widely
used [3]. Few tools based on ontology are available for
annotating genome-wide data with disease associations.
The lack of ontology based disease annotation prevents
the application of disease knowledge to genomic data,
therefore hindering the discovery of gene-disease associa-
tions from high throughput genomics technologies.

Online Mendelian Inheritance in Man (OMIM), curated
by the NCBI and Johns Hopkins University, is arguably
the most widely used disease gene annotation database.
Although the curation process provides highly detailed
annotation and minimizes errors, there is a noticeable
delay in updating. Furthermore, the vocabulary of OMIM
is predominately text based, far from comprehensive, and
is difficult to use [4-6]. It is simply not possible to down-
load a list of diseases from OMIM and users have resorted
to mining the Clinical Synopsis free text section of OMIM
for disease discovery [7]. It also focuses on genetic dis-
eases with classic Mendelian inheritance, thus eliminating
the wide range of diseases resulting from more compli-
cated environmental and genetic interactions.

Another source of gene-disease mappings from linkage
studies is the "Genetic Association Database" (GAD) [4]
which aims to "collect, standardize and archive genetic
association study data". The structure of the classification
system GAD used to classify its diseases is not apparent.
Diseases are classified in 10 broad classes including an
"other" class (some remain unclassified), an unknown
number of broad phenotype classes below those and a
further number of narrow phenotype classes. This lack of
apparent ontology makes it hard to determine the number
and types of diseases GAD contains. For example, search-
ing for "Crohn's disease" returns 25 results but searching
for "regional enteritis" returns no results.

Researchers have also used abstracts and titles from
MEDLINE as a data source for inferring gene-disease asso-
ciations [8,9]. Although a current and rich source of infor-
mation, the free text form of MEDLINE abstracts presents
difficulties for determining the context of the association
between gene and disease [10]. This is particularly true
when genes are identified by semantically ambiguous

gene symbols which may or may not apply to a disease
recognized in free text. For instance CAT can refer to the
catalase gene or a feline animal, depending on the con-
text.

A GeneRIF (Gene Reference Into Function) is a brief (up
to 255 character) annotation to a gene in the NCBI data-
base and contains gene specific information including dis-
ease associations. These entries are modifiable by NCBI
users willing to provide their email address. Such a Wiki-
type of resource offers low mapping error of gene symbols
and allows a rapid update by the research community
[11]. Despite this utility, GeneRIF has been infrequently
considered as a data source for text mining, evidenced by
the fact that only six papers indexed in pubmed contain
the term "GeneRIF". One of these describes a data mining
tool called MILANO, which counts occurrences of each
GeneRIF annotated gene with user-defined terms selected
from Medical Subject Headings (MeSH) and includes
some disease terms [12]. The authors found GeneRIF
superior to Medline, PubMatrix, BEAR GeneInfo, and
MicroGenie, for identifying p53 affected genes. A more
recent approach using conditional random fields to map
a test set of geneRIFs to MeSH terms further validates
geneRIFs as a comprehensive data source [13] for the
human genome annotation.

To provide a comprehensive disease to gene annotation,
we used the Disease Ontology (DO) [14] to identify rele-
vant diseases in GeneRIFs. The Disease Ontology is a man-
ually inspected subset of Unified Medical Language
System (UMLS) and includes concepts from outside the
UMLS disease/disorder semantic network including vari-
ous cancers, congenital abnormalities, deformities and
mental disorders. While many researchers have mapped
diseases to MeSH terms [8,15-17] or OMIM [5,7] the Dis-
ease Ontology is larger and should therefore provide
greater disease coverage. The hierarchal structure also
allows more general disease terms to be distinguished
from subclasses, in order to account for "over-mapping"
of disease terms to a textually larger database. We used a
thesaurus based approach (MetaMap Transfer tool,
MMTx) for analyzing GeneRIFs with demonstrated suc-
cess in studying clinically relevant terms [18].

Results
Mapping genes to Disease Ontology
The process for mapping Disease Ontology (DO) terms to
GeneRIFs is illustrated in Figure 1A. The Disease Ontology
is a disease-focused comprehensive subset of Unified
Medical Language System (UMLS) and outside terms
structured as a directed acyclic graph, similar to the struc-
ture of the Gene Ontology (GO) from the GO Consor-
tium. MetaMap Transfer tool (MMTx) was used to map
the DO to GeneRIFs. These mappings are stored in the
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Open Biomedical Ontologies (OBO; http://obo.source
forge.net) format and can be manually edited using the
open source graph editor DAGEdit http://geneontol
ogy.sourceforge.net. An example gene-disease association
is shown in Figure 1B. The GeneRIF entry for TGFB1 links
the gene to the DO term. The related Disease Ontology
terms are also provided for the mapped DO term. In cases
where multiple mappings of a gene are possible along a
branch of the Disease Ontology tree, genes are mapped to
the most specific disease term.

Disease ontology annotations of a human gene describe
unique roles for genes in the context of disease, and are
complementary to gene ontology annotations. The gene-
disease mapping for ATP7B is provided as an example in
Figure 2. The gene description is provided, along with DO,
OMIM, and GO annotations. This example demonstrates
that GeneRIF results in more disease associations than
OMIM for this gene. Also note that the DO annotation
uses a formal vocabulary of "hepatolenticular degenera-
tion" instead of "Wilson disease".

To assess the gene-disease associations we identify, graphs
illustrating the mapping of single genes to diseases as well
as single diseases to genes are presented in Figure 3. Simi-
lar results from OMIM are reported on the graph as a
point of reference. Plots of the number of diseases per
gene (Figure 3a) and the number of genes per disease (Fig-
ure 3b) suggest the depth and coverage of DO annotation
is higher than OMIM. In addition, both the number of
diseases per gene and the number of genes per disease
demonstrate scale-free properties, which have been
observed in both biological networks and citation net-
works [19]. As such, there is no 'mode' or 'scale' as
observed in a Gaussian distribution; the number of dis-
eases per gene spreads from 195 to 1. The gene with the
greatest number of disease associations is Interleukin 6
(IL6). Moreover, the result from the DO annotation sug-
gests a 'rich get richer' phenomenon: the top 48 (1%)
genes are implicated in 931 (50%) diseases.

Not surprisingly, several cancers including breast, pros-
tate, liver, colon, and metastatic lesions have a larger
number of genes associated with them (Table 1). Other

Diagram of Disease Ontology annotation of the human genomeFigure 1
Diagram of Disease Ontology annotation of the human genome. A) MMTx was used to annotate GeneRIFs with the 
Disease Ontology (DO). B) An example GeneRIF suggests that Gene ID: 7040 is annotated with DOID:2585.

A         B 
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non-cancer diseases implicated with many genes include
other complex diseases including diabetes and rheuma-
toid arthritis. When we look at the genes associated with
many diseases, the interleukins including IL1B, IL6, IL8,
and IL10 are near the top of the list (Table 2). Biologically,
this is likely due to the fact that inflammation is a com-
mon pathological consequence. In addition, matrix met-
alloproteinases MMP2 and MMP9, the cell growth and
cell cycle regulators CDKN2A, BCL2, and EGFR, and
Methylentetrahydrofolate reductase (MTHFR) genes are
among the top genes associated with numerous disease
conditions.

Performance evaluation
For evaluation, we use two commonly used performance
metrics in textual data retrieval, which are defined as fol-
lows:

From these formulas, we can see they are closely related to
false positive and false negative rates that are used in other
fields. A recall rate of 100% and a precision rate of 100%
are of ideal situations. For disease annotation, we con-
structed a truth table of the Homayouni gene collection
[20] manually using GeneRIF and OMIM text as a source.

For the Homayouni gene collection, there are 3879
GeneRIFs, with an average of 77.58 GeneRIFs per gene
and a median of 22. On average our algorithm maps
18.8% of GeneRIFs to a disease, with recall and precision
rates of 90.76% and 96.66% respectively (Table 3). Map-
ping the Homayouni gene collection to OMIM, however,
results in a recall rate of 21.85% and precision of 98.46%.
Since OMIM is a curated database, the slightly higher pre-
cision rate for OMIM compared to GeneRIF is not surpris-
ing. However, this small loss in precision by using OMIM
is accompanied by a dramatically reduced recall rate.

A network visualization based on the DO Annotation of 
the human genome
To illustrate the connected nature of gene-disease map-
pings, we plot the genes associated with any of the four
well-studied cancers (breast, ovarian, neuroblastoma and
multiple myeloma) and show the gene-disease relation-
ships from our analysis (Figure 4). Each dark grey dot rep-
resents one gene, and 357 genes are annotated to ovarian
cancer, 199 genes are annotated to breast cancer, 156
genes are annotated to neuroblastoma, and 135 genes are
annotated to multiple myeloma. The diseases are denoted
using large light grey dots and the size of the dot is propor-
tional to the number of genes connecting to it. The shaded
circle at the center of the figure highlights the 11 genes
related to all of four diseases (MYC, BCL2, KIT, WT1,

Recall Number of relevant ones returned Total number of= ( ) /(   relevant ones)

Precision Number of relevant ones returned Total number= ( ) /(   of returned)

Figure 2

Example Gene Annotation by DO, OMIM and GOFigure 2
Example Gene Annotation by DO, OMIM and GO. 
ATP7B ATPase, Cu++ transporting, beta polypep-
tide. GeneID: 540. This gene is a member of the P-type 
cation transport ATPase family and encodes a protein with 
several membrane-spanning domains, an ATPase consensus 
sequence, a hinge domain, a phosphorylation site, and at least 
2 putative copper-binding sites. This protein functions as a 
monomer, exporting copper out of the cells, such as the 
efflux of hepatic copper into the bile. Alternate transcrip-
tional splice variants, encoding different isoforms with dis-
tinct cellular localizations, have been characterized. 
Mutations in this gene have been associated with Wilson dis-
ease (WD). DOID. Breast Carcinoma, Carcinoma, Congeni-
tal Abnormality, Disorder of copper metabolism, Esophageal 
carcinoma, Hepatolenticular Degeneration, Liver diseases, 
Malignant neoplasm of ovary, Primary carcinoma of the liver 
cells, Stomach Carcinoma. OMIM. Wilson disease. GO. 
ATP binding, ATPase activity, coupled to transmembrane 
movement of ions, phosphorylative mechanism, Component, 
Golgi apparatus, Process, cellular copper ion homeostasis, 
cellular zinc ion homeostasis, colocalizes_with basolateral 
plasma membrane, colocalizes_with cytoplasmic membrane-
bounded vesicle, colocalizes_with perinuclear region of cyto-
plasm, colocalizes_with trans-Golgi network, copper ion 
binding, copper ion import, copper ion transmembrane 
transporter activity, copper ion transport, copper-exporting 
ATPase activity, cytoplasm, hydrolase activity, hydrolase 
activity, acting on acid anhydrides, catalyzing transmembrane 
movement of substances, integral to membrane, integral to 
plasma membrane, intracellular copper ion transport, ion 
transport, lactation, late endosome, magnesium ion binding, 
membrane, membrane fraction, metabolic process, metal ion 
binding, metal ion transmembrane transporter activity, metal 
ion transport, mitochondrion, nucleotide binding, protein 
binding, response to copper ion, sequestering of calcium ion, 
transport. An example gene annotation is provided for 
ATP7B. The gene description, DOID, OMIM, and GO anno-

ATP7B ATPase, Cu++ transporting, beta polypeptide  

GeneID: 540 

This gene is a member of the P-type cation transport ATPase family and encodes a protein with several 
membrane-spanning domains, an ATPase consensus sequence, a hinge domain, a phosphorylation 
site, and at least 2 putative copper-binding sites. This protein functions as a monomer, exporting copper 
out of the cells, such as the efflux of hepatic copper into the bile. Alternate transcriptional splice variants, 
encoding different isoforms with distinct cellular localizations, have been characterized. Mutations in this 
gene have been associated with Wilson disease (WD). 

DOID 

Breast Carcinoma, Carcinoma, Congenital Abnormality, Disorder of copper metabolism, Esophageal 
carcinoma, Hepatolenticular Degeneration, Liver diseases, Malignant neoplasm of ovary, Primary 
carcinoma of the liver cells, Stomach Carcinoma 

OMIM 

Wilson disease 

GO 

ATP binding, ATPase activity, coupled to transmembrane movement of ions, phosphorylative 
mechanism, Component, Golgi apparatus, Process, cellular copper ion homeostasis, cellular zinc ion 
homeostasis, colocalizes_with basolateral plasma membrane, colocalizes_with cytoplasmic membrane-
bounded vesicle, colocalizes_with perinuclear region of cytoplasm, colocalizes_with trans-Golgi 
network, copper ion binding, copper ion import, copper ion transmembrane transporter activity, copper 
ion transport, copper-exporting ATPase activity, cytoplasm, hydrolase activity, hydrolase activity, acting 
on acid anhydrides, catalyzing transmembrane movement of substances, integral to membrane, integral 
to plasma membrane, intracellular copper ion transport, ion transport, lactation, late endosome, 
magnesium ion binding, membrane, membrane fraction, metabolic process, metal ion binding, metal ion 
transmembrane transporter activity, metal ion transport, mitochondrion, nucleotide binding, protein 
binding, response to copper ion, sequestering of calcium ion, transport 
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CXCL12, CDKN1B, IGF1, CCND1, BIRC5, SKP2, and
MMP2). The functions of these genes include cell cycle
regulation, apoptosis, growth factor signaling, and extra-
cellular matrix remodeling. Although these pathways are
well known to play a role in cancer initiation or progres-
sion, the identification of this specific set of genes may be
useful for researcher interested in identifying targets com-
mon to these four cancers in particular.

Discussion
The Disease Ontology consists of a manually inspected
subset of UMLS and terms outside the UMLS disease and
disorder semantic network including various cancers, con-
genital abnormalities, deformities and mental disorders
that are important to researchers trying to understand the

genetic and molecular basis of a particular disease. There-
fore, compared to UMLS, the Disease Ontology is much
larger in size and more specific to the disease of interest. It
therefore offers greater disease coverage with improved
accuracy. In addition, its hierarchal structure allows a
more specific disease term to be binned to a more general
disease term at different levels which is especially useful
for Disease Ontology enrichment analysis analogous to
gene ontology enrichment analysis in experiments apply-
ing high throughput technologies.

Our results indicate that GeneRIFs are an excellent data
source for discovering disease-gene relationships. This is
primarily due to the large number of GeneRIFs relative to
OMIM entries, and the surprisingly high (14.9%) fre-
quency of disease references. The disease coverage of
OMIM would be improved if the free text had been
mined, but only 235 genes in OMIM have a clinical syn-
opsis section and limiting our analysis to these entries
would bias our results. Using the clinical synopsis section
in addition to other OMIM free text would increase the
number of false positives since OMIM free text frequently
includes diseases without a direct relationship to the gene,
usually for comparative purposes or in reference to exper-
iments in model organisms.

Errors in our method may arise from a variety of sources
including problems with MMTx, many of which have
already been elucidated [21]. The problem of having dis-
ease terms present in OMIM or GeneRIF, but missing in
DO or UMLS was infrequent but did include some cases
such Craniofacial-deafness-hand syndrome. A more sig-
nificant problem contributing to the majority of false pos-
itives was the discovery of disease terms in GeneRIF that
indicated only a partial, ambiguous or no association to
the gene in question. Fortunately, the succinctness of
GeneRIF means that this occurs less frequently than in
abstracts (data not shown) which may contain diseases
not directly related to the gene. We found only one incor-
rectly assigned GeneRIF in the 1746 GeneRIFs examined,
indicating that this is a minor source of error.

Table 1: First Ten Diseases ordered by the number of gene annotations

DOID Description Number of Genes

DOID:162 Cancer 943
DOID:462 Malignant Neoplasms 903
DOID:4241 Malignant neoplasm of breast 698
DOID:4766 Embryoma 620
DOID:10283 Malignant neoplasm of prostate 543
DOID:2619 Neoplasm Metastasis 386
DOID:9352 Diabetes Mellitus, Non-Insulin-Dependent 329
DOID:684 Primary carcinoma of the liver cells 326
DOID:7148 Rheumatoid Arthritis 320
DOID:1994 Carcinoma of the Large Intestine 313

Comparison of DO and OMIM AnnotationFigure 3
Comparison of DO and OMIM Annotation. A) The 
number of diseases per gene is plotted for the Disease 
Ontology (DO) analysis and OMIM. B) The number of genes 
per disease is plotted for the Disease Ontology (DO) analysis 
and OMIM.
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One result from our analysis is that OMIM performs
poorly relative to GeneRIF with newly discovered map-
pings. A fairly typical case is the alpha-2-marcroglobuin
gene. While OMIM includes mappings for Alzheimer's
disease and pulmonary emphysema (missed by GeneRIF),
it excludes potential links to benign prostatic hyperplasia,
multiple sclerosis and argyrophilic grain disease. This may
be a result of OMIM's stronger requirement for evidence,
but failure to keep pace with current research may also
contribute.

We annotated the human genome with Disease Ontology
and reported its performance. Such an annotation will
enable many graphical and statistical applications similar
to previously what has been done with Gene Ontology
annotations. An example of this is presented in Figure 4,
where all the genes in the human genome with estab-
lished links to four cancers led to the identification of
eleven genes in common between these four cancers. This
analysis facilitates identification of relevant targets or
markers for diseases with common etiology or pathology,
and has implications for biological plausibility as well as
therapeutic potential. Although previous studies have
demonstrated the utility of this approach, the improved
coverage and accuracy of our analysis provide even greater
potential [22]. Our future plans include developing a
web-enabled database application of the Disease Ontol-
ogy for the research community http://projects.bioinfor
matics.northwestern.edu/fundo.

Conclusion
Similar to the GO annotation, we provide a DO annota-
tion of the human genome; each annotation is supported
by a peer-reviewed publication as required by GeneRIF. It
enables researchers to study gene-disease relationships
computationally. The DO annotation of the human
genome is available in both tab-delimited format and
relational database format http://projects.bioinformat
ics.northwestern.edu/do_rif/, which allows them to be
easily adapted for other applications.

Methods
MMTx
MMTx is a natural language processing engine that identi-
fies concepts from free text using a lexicon [23]. Briefly, a
part-of-speech tagger labels the noun phrases from the
lexical elements created after parsing and tokenization
(Figure 1A). These noun phrases and variants of these
phrases are used to search the UMLS Metathesaurus and
outside disease terms to find matching candidates, each of
which is given a score; final mappings are generated that
best cover the input noun phrase. The Disease Ontology
therefore consists of a manually inspected subset of UMLS
and terms outside the UMLS disease and disorder seman-
tic network including various cancers, congenital abnor-
malities, deformities and mental disorders.

Our in-house software parses in the GeneRIF and OMIM
data and uses the MMTx API to generate final mappings
between genes and diseases. The strict data model of Uni-
fied Medical Language System (UMLS) distribution
2005ac was searched against using the default settings of
MMTx with an empirically derived score cutoff value of
700. Results were further filtered using the DO version 3.0
(RC9) to eliminate non-disease biological relationships.
In addition, a simple heuristic approach was used to elim-
inate both non-informative mappings to DO (such as
"Disease" or "Syndrome") and to eliminate text present in
GeneRIF that was frequently mis-mapped by UMLS such
as Ca++ ions being mapped to cancer terms. The program

Table 3: Estimation of recall and precision of disease annotation

OMIM GeneRIF

Recall 21.85 90.76
Precision 98.46 96.66

The Homayouni gene collection was used to estimation of recall and 
precision of gene mappings to the Disease Ontology.

Table 2: First Ten Genes ordered by the number of disease annotations

Entrez ID Gene Symbol Gene Name Number of Diseases

3569 IL6 interleukin 6 168
4318 MMP9 matrix metallopeptidase 9 164
1956 EGFR epidermal growth factor receptor 138
1029 CDKN2A cyclin-dependent kinase inhibitor 138
4313 MMP2 matrix metallopeptidase 2 135
3586 IL10 interleukin 10 134
4524 MTHFR 5,10-methylenetetrahydrofolate reductase 123
3576 IL8 interleukin 8 121
596 BCL2 B-cell CLL/lymphoma 2 115
3553 IL1B interleukin 1, beta 109
Page 6 of 8
(page number not for citation purposes)

http://projects.bioinformatics.northwestern.edu/fundo
http://projects.bioinformatics.northwestern.edu/fundo
http://projects.bioinformatics.northwestern.edu/do_rif/
http://projects.bioinformatics.northwestern.edu/do_rif/


BMC Genomics 2009, 10(Suppl 1):S6 http://www.biomedcentral.com/1471-2164/10/S1/S6
calling the MMTx API and generating the gene-disease
mapping is written in Java and available upon request.

GeneRIF and OMIM data
The October 10th, 2008 release of both OMIM and
GeneRIF were used. For OMIM, only validated data in the
formatted "morbidmap" (including disease susceptibili-
ties) file was used. This is because there are currently only
235 records in OMIM which contain a clinical synopsis of
the disease, additional disease information is scattered
through other sections of the OMIM record making it
hard to determine if the disease mentioned is for an ani-
mal model or other comparative purposes.

Scoring and validation
To evaluate our annotation methodology, and to compare
our GeneRIF results with the traditional OMIM resource
in detail, we utilized a well-characterized fifty-gene collec-
tion by Homayouni et al. that they used to evaluate
semantic indexing of gene functions [20]. This gene col-
lection includes genes in the reelin signaling pathway of
Alzheimer's disease and other genes important in cancer
biology and development. We call it Homayouni gene
collection from here on. The 5 genes with more than 50
diseases mapped to them (APOE, EGFR, ERBB2, TGFB1

and TP53) were excluded from the test set due to the large
number of GeneRIFs requiring manual inspection. This
evaluation was done on February 9th, 2006.

Assessing the false positive and false negative error rates
for this collection was difficult [24], so several domain
experts were used for scoring the results with all results
reviewed by MID (internal medicine physician) who
made the final error determination. To determine gene-
disease relationships, a false positive was scored only
when the disease was identified incorrectly. No effort was
made here to assess the appropriateness of the GeneRIF
because of the subjective nature of such a process. How-
ever for Table 3 estimates were used for calculating preci-
sion and recall rates whereby the overall false positive
value was corrected to account for false positives arising
when a correctly identified disease did not have a relation-
ship to its associated gene as specified in the GeneRIF.
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